

Rotation Of A Rigid Object About A Fixed Axis

Mustafa A-Zyout - Philadelphia University

7-Oct-2

1

 $\frac{2}{2}$

Rotational Kinematic Equations

Austafa A-Zyout - Philadelphia University

7-Oct-2

Rotational Kinematics

Under constant angular acceleration, we can describe the motion of the rigid object using a set of kinematic equations.

These are similar to the kinematic equations for linear motion.

The rotational equations have the same mathematical form as the linear equations.

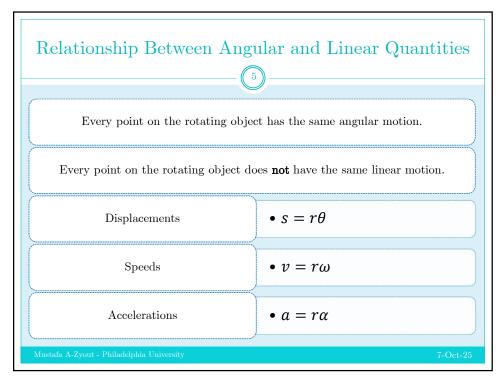
The new model is a rigid object under constant angular acceleration.

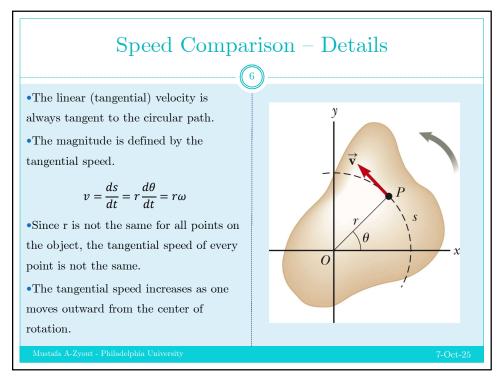
Analogous to the particle under constant acceleration model.

Mustafa A-Zvout - Philadelphia Universit

Oct 25

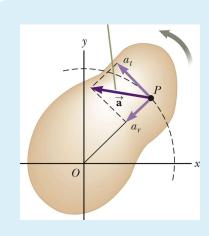
-


Rotational Kinematic Equations


Equations	Missing	
$\omega_f = \omega_i + \alpha t$	$\Delta \theta$: displacement (m)	
$\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$	$t: \mathrm{time}\ (\mathrm{s})$	
$\Delta\theta = \omega_i t + \frac{1}{2} \alpha t^2$	$\omega_{\mathrm{f}}:$ final velocity (m/s)	
$\Delta\theta = \omega_f t - \frac{1}{2}\alpha t^2$	ω_i : initial velocity (m/s)	
$\Delta\theta = \frac{1}{2}(\omega_i + \omega_f)t$	α : acceleration (m/s ²)	

Mustafa A-Zyout - Philadelphia University

7-Oct-2


_

Acceleration Comparison – Details

• The tangential acceleration is the derivative of the tangential velocity.

$$a_t = \frac{dv}{dt} = r\frac{d\omega}{dt} = r\alpha$$

Mustafa A-Zyout - Philadelphia Universit

7 Oct 25

7

Speed and Acceleration Note

- All points on the rigid object will have the same angular speed, but not the same tangential speed.
- •All points on the rigid object will have the same angular acceleration, but not the same tangential acceleration.
- The tangential quantities depend on r, and r is not the same for all points on the object.

Mustafa A-Zyout - Philadelphia University

7 Oct 25

Centripetal Acceleration

An object traveling in a circle, even though it moves with a constant speed, will have an acceleration.

Therefore, each point on a rotating rigid object will experience a centripetal acceleration.

•
$$a_c = \frac{v^2}{r} = r\omega^2$$

Muetofo A Zvout Philadolphia Universit

7 Oct 2

9

Resultant Acceleration

The tangential component of the acceleration is due to changing speed.

The centripetal component of the acceleration is due to changing direction.

Total acceleration can be found from these components:

•
$$a = \sqrt{a_t^2 + a_c^2} = r\sqrt{\alpha^2 + \omega^4}$$

Mustafa A-Zyout - Philadelphia University

7-Oct-2

Rotating Wheel 1

Saturday, 30 January, 2021

Lecturer: Mustafa Al-Zyout, Philadelphia University, Jordan.

- Larning, 2014. R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.
- H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.
- H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

A wheel rotates with a constant angular acceleration of 3.5 rad/s^2 .

- \circ If the angular speed of the wheel is 2 rad/s at $t_i = 0$, through what angular displacement does the wheel rotate in 2 s?
- Through how many revolutions has the wheel turned during this time interval?
- What is the angular speed of the wheel at t = 2 s?

$$\Delta\theta = \theta_f - \theta_i = \omega_i t + \frac{1}{2}\alpha t^2$$

$$\Delta\theta = (2.00 \text{ rad/s})(2.00 \text{ s}) + \frac{1}{2}(3.50 \text{ rad/s}^2)(2.00 \text{ s})^2$$

= 11.0 rad = (11.0 rad)(180°/ π rad) = 630°

$$\Delta\theta = 630^{\circ} \left(\frac{1 \text{ rev}}{360^{\circ}}\right) = 1.75 \text{ rev}$$

$$\omega_f = \omega_i + \alpha t = 2.00 \text{ rad/s} + (3.50 \text{ rad/s}^2)(2.00 \text{ s})$$

= 9.00 rad/s

Quadratic equation Saturday, 30 January, 2021 16:17	R. A. Serway and J. J. Walker, D. Hallida H. D. Young and R.	Zyout, Philadelphia University, Jordan. W. Jewett, Jr., Physics for Scientists and Engineer y and R. Resnick, Fundamentals of Physics, 10th e A. Freedman, University Physics with Modern Phy Rasmussen, Principles of Physics For Scientists an	od., WILEY,2014. sics, 14th ed., PEARSON, 2016.
A grindstone rotates at constant velocity of $-4.6 \ rad/s$ and a result of $-4.6 \ rad/s$			
what time after $t = 0$ is the refe			7.5.1.01
Calculations: Substitut and $\theta = 5.0 \text{ rev} = 10\pi\text{ r}$ $10\pi\text{ rad} = (-4)\pi$			
(We converted 5.0 rev tent.) Solving this quad			
	t = 32 s.	(Answer)	

Saturday, 30 January, 2021

- R. A. Serway and J. W. Jewett, Jr., Physics for Scientists and Engineers, 9th Ed., CENGAGE Learning, 2014.
- J. Walker, D. Halliday and R. Resnick, Fundamentals of Physics, 10th ed., WILEY, 2014.
- H. D. Young and R. A. Freedman, University Physics with Modern Physics, 14th ed., PEARSON, 2016.
- H. A. Radi and J. O. Rasmussen, Principles of Physics For Scientists and Engineers, 1st ed., SPRINGER, 2013.

A wheel accelerates uniformly from rest to an angular speed of 25 rad/s in 10 s.

- Find the angular acceleration of the wheel.
- Find the tangential and radial acceleration of a point 10 cm from the wheel's center.
- How many revolutions has the wheel turned during this time interval?
- Find the wheel's angular deceleration if it comes to a full stop after 5 rev..

Solution: (a) We are given $\omega_0 = 0$, $\omega = 25$ rad/s, and t = 10 s. To find the angular acceleration a, we can use $\omega = \omega_0 + \alpha t$ as follows:

$$\alpha = \frac{\omega - \omega_{\circ}}{t} = \frac{25 \text{ rad/s} - 0}{10 \text{ s}} = 2.5 \text{ rad/s}^2$$

(b) Using Eqs. 8.13 and 8.14 (See Sect. 8.5), we get:

$$a_t = r\alpha = (10 \times 10^{-2} \text{ m})(2.5 \text{ rad/s}^2) = 0.25 \text{ m/s}^2$$

$$a_{\rm r} = r \omega^2 = (10 \times 10^{-2} \,\text{m})(25 \,\text{rad/s})^2 = 62.5 \,\text{m/s}^2$$

(c) If we assume that the wheel starts from $\theta_{\circ} = 0$, then we are given $\omega_{\circ} = 0$, $\omega = 25$ rad/s, $\theta_{\circ} = 0$, and t = 10 s. To find θ , which in this case equals the angle traveled by a certain reference line in the wheel, we use $\theta - \theta_{\circ} = \frac{1}{2}(\omega_{\circ} + \omega) t$ as follows:

$$\theta = \theta_{\circ} + \frac{1}{2}(\omega_{\circ} + \omega) \ t = 0 + \frac{1}{2}(0 + 25 \text{ rad/s}) \times 10 \text{ s} = 125 \text{ rad}$$

Thus:

$$\theta = 125 \, \text{rad} \times \left(\frac{1 \, \text{rev}}{2\pi \, \text{rad}}\right) \simeq 20 \, \text{rev}$$

(d) We are given $\omega_{\circ} = 25 \text{ rad/s}$, $\omega = 0$, and, $\theta - \theta_{\circ} = 5 \text{ rev} = 10\pi \text{ rad}$. To find the angular deceleration α , we use $\omega^2 = \omega_{\circ}^2 + 2 \alpha (\theta - \theta_{\circ})$ to get:

$$\alpha = \frac{\omega^2 - \omega_o^2}{2 (\theta - \theta_o)} = \frac{0 - (25 \text{ rad/s})^2}{2 \times 10\pi \text{ rad}} = -9.95 \text{ rad/s}^2$$